"Weighing" photon energies with mass spectrometry: effects of water on ion fluorescence.
نویسندگان
چکیده
We report a new, highly sensitive method for indirectly measuring fluorescence from ions with a discrete number of water molecules attached. Absorption of a 248 nm photon by hydrated protonated proflavine, PH(+)(H(2)O)(n) (n = 13-50), results in two resolved product ion distributions that correspond to full internal conversion of the photon energy (loss of approximately 11 water molecules) and to partial internal conversion of the photon energy and emission of a lower energy photon (loss of approximately 6 water molecules). In addition to fluorescence, a long-lived triplet state with a half-life of approximately 0.5 s (for n = 50) is formed. The energy of the emitted photon can be obtained from the number of water molecules lost from the precursor to form each distribution. The photon energies generally red shift from approximately 450 to 580 nm with increasing cluster size (the onset of the PH(+)(aq) fluorescence spectrum is 600 nm and the maximum is 518 nm) consistent with preferential stabilization of the first excited singlet state versus the ground state. The fluorescence quantum yield of PH(+)(H(2)O)(n) for n > or = 30 is 0.36 +/- 0.02, the same as that in bulk solution, and increases dramatically with decreasing cluster sizes, due to less efficient conversion of electronic-to-vibrational energy. The high sensitivity of this method should make it possible to perform Forster resonance energy transfer experiments with gas-phase biomolecules in a microsolvated environment to investigate how a controlled number of water molecules facilitates dynamical motions in proteins or other molecules of interest.
منابع مشابه
Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry
The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 – 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by ≤8 eV s...
متن کاملQuantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)
The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...
متن کاملThe Impact of Nano-Sized Gold Particles on the Target Dose Enhancement Based on Photon Beams Using by Monte Carlo Method
Objective(s): In this study we evaluate the impact of the different aspects of Gold Nano-Particles (GNPs) on the target absorptive Dose Enhancement Factor (DEF) during external targeted radiotherapy with photon beams ranging from kilovolt to megavolt energies using Monte Carlo simulation. Methods: We have simulated the interaction of photon beams wi...
متن کاملComparison of the photon charge between water and solid phantom depending on depth
Background: This study assessed the clinical usefulness of the solid phantom, which may compensate for the disadvantages of the water phantom, by comparing the radiological doses between the two depending on their depths. Materials and Methods: The experimental equipment used was a linear accelerator for medical use, water phantom, solid phantom, Farmer type ion chamber and electrometer. The di...
متن کاملInternal energy content of n-butylbenzene, bromobenzene, iodobenzene and aniline molecular ions generated by two-photon ionization at 266 nm. A photodissociation study
A technique to investigate photodissociation kinetics on a nanosecond time scale has been devised for molecular ions generated by multiphoton ionization (MPI) using mass-analyzed ion kinetic energy spectrometry. The branching ratio or rate constant has been determined for the photodissociation of the n-butylbenzene, bromobenzene, iodobenzene, and aniline molecular ions generated by MPI at 266 n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 20 شماره
صفحات -
تاریخ انتشار 2010